If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+32X+248=0
a = 1; b = 32; c = +248;
Δ = b2-4ac
Δ = 322-4·1·248
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{2}}{2*1}=\frac{-32-4\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{2}}{2*1}=\frac{-32+4\sqrt{2}}{2} $
| 82=(3x+1) | | 134=2x | | x=19+5/6 | | 119=6x | | 124=4x | | 15/2=2r/2r | | (6x+4)=(6x+2) | | -43+7x=4x+59 | | 41=(5x+1) | | 3n-4=32 | | 6x+4-2=10+4x=8 | | 84=34x | | (2x+14)(2x+26)=864 | | (2x14)(2x26)=864 | | 116=(x+6) | | 4*9x-4*2= | | 2y-(2y-3)=9 | | x-2x+2-8x=3-(7/2)x | | ,5x-34=10 | | 2x^2+4x+6x=13 | | 16x^2-59x=20 | | (17(2-x)-5(x+12))/(1-7x)=8 | | 5x-3=2x+-12 | | 139=(4x+3) | | 9+a-9=30 | | 4x^2+3x+2=5x+2 | | n=2/3-(-5/9) | | 16x^2-67x=20 | | 4x^2+2x-1=5 | | 3t-10=4t+15 | | 2.6x-9.14=3.6 | | x+4/2-2x+1/3=1 |